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Evolution of pinch-and-swell structures in a power-law layer
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Abstract
Analytical and finite element (FEM) solutions for the necking of a single power-law layer up to large finite amplitude are obtained. Contin-
uous necking of the layer produces pinch-and-swell structures. The layer is either a free plate or embedded in a homogeneous medium. An
analytical solution for finite amplitude necking based on the assumption that plane sections remain plane (PSRP) agrees well with the FEM
result for a layer power-law stress exponent n � 5 and for a ratio of layer to medium effective viscosities m � 100. FEM simulations for em-
bedded layers verify that PSRP for m � 20. The presented numerical experiments generate localized necking and pinch-and-swell structures
similar to natural ones for n � 5 and m > 20. Additional weakening mechanisms, such as strain softening, although likely to be operative in
nature, are not required to generate natural pinch-and-swell structures. FEM experiments with random perturbation of the layer interfaces
show that even with strong necking instability the layer is thinned at the swell as well as at the necks, affecting strain estimation from
pinch-and-swell geometry.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Pinch-and-swell structures (Fig. 1, see also Ramberg, 1955;
Price and Cosgrove, 1990; Pollard and Fletcher, 2005) result
from necking when a stiff layer and its weaker matrix are
subject to layer-parallel extension, or, equivalently, layer-nor-
mal shortening (Kidan and Cosgrove, 1996). Pinch-and-swell
structures form by continuous necking, while discrete boudins
(Ramberg, 1955; Pollard and Fletcher, 2005) form by either
mode I fracture or mode II faulting, often after some continu-
ous necking.

Various natural structures on different scales are likely the
result of necking. The regular alternation of basins and ranges
in the Basin and Range Province, western United States
(Fletcher and Hallet, 1983; Zuber and Parmentier, 1986),
and that of analogous structures in the grooved terrain on
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the moon of Jupiter Ganymede (Dombard and McKinnon,
2001) can be interpreted as the result of selective amplification
in necking. Necking in extension of the crust and lithosphere is
a mechanism of sedimentary basin and continental margin for-
mation (Bassi and Bonnin, 1988; Braun and Beaumont, 1989;
Martinod and Davy, 1992). Regular spacing in small scale
pinch-and-swell structures (Fig. 1DeF) clearly forms by neck-
ing and is the subject of the present paper.

Analysis of low-amplitude necking of an embedded layer
yields the growth rate of a sinusoidal pure pinch-and-swell
perturbation (Smith, 1977; Johnson and Fletcher, 1994) as
a function of its wavelength to thickness ratio, L/T, and the
rheological parameters m, n, and for the matrix, n1 (see Table
1 for explanation of symbols). The most rapid amplification
occurs at the dominant wavelength to layer thickness ratio,
Ld/T (Fig. 2, Biot, 1961; Fletcher, 1974; Smith, 1977). These
analytical results, valid for gentle interface slope with ampli-
tude A� L, are not applicable to growth of pinch-and-swell
structures with the large layer thickness variation that is com-
monly observed (Fig. 1). Few mathematical and experimental
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Fig. 1. Natural examples of pinch-and-swell structures. (A) and (B) show limestone layers embedded in marls (Argovian) form the Ultrahelvetic Zone between the

Morcles and Diablerets nappes, Swiss Alps, (C) shows metamorphic migmatites from Wadi Firan, Sinai, Egypt, (D) shows metamorphic migmatites from Valle

Maggia, Swiss Alps (Photos AeD) by S.M. Schmalholz), (E) shows metamorphic migmatites from Canada (photo by J.-P. Burg, full picture can be seen on www.

diogenes.ethz.ch), and (F) shows vein quartz in black calcite marble from Ugab region, Namibia (photo by N. Mancktelow).
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Table 1

Explanation of symbols used in the text

Symbol Explanation

A Amplitude

A0 Initial amplitude

T Thickness of the layer

T0 Initial thickness

L Wavelength

L0 Initial wavelength

Ld Dominant wavelength

Lp Preferred wavelength

k Dimensionless wave number

kd Dominant wave number

Dxx Basic-state rate of extension

S Stretch

q Rate of amplification, growth rate

qd Dominant rate of amplification

n Power-law exponent of the layer

n1 Power-law exponent of the matrix

h Effective viscosity of the layer

h1 Effective viscosity of the matrix

m Viscosity ratio: h/ h1

t Time

B Material constant

txx Layer-parallel deviatoric stress

F Layer-parallel force
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(Ramberg, 1955; Neurath and Smith, 1982; Mandal et al.,
1992) studies have investigated the finite-amplitude evolution.
An approximate analytical solution for fold growth to large
amplitude (Schmalholz and Podladchikov, 2000) is not yet
available for necking. Here, finite amplitude evolution of
pinch-and-swell structures is studied with the numerical, fi-
nite-element method (FEM) to obtain results for nonlinear,
large strain effects. An analytical solution for finite amplitude
Fig. 2. The dispersion relation for power-law necking (eq. 2). The dimension-

less growth rate of the layer perturbation, q, is plotted versus the ratio of wave-

length to layer thickness, L/T. The dominant wavelength to layer thickness

ratio, Ld/T, corresponds to the maximal value of q. The effective viscosity con-

trast, m, is 20 and 100, the power-law exponents of the layer, n, are 5 and 10

and the power-law exponent of the matrix is 1 (i.e. Newtonian matrix). The

crosses have been numerically calculated with the FEM code (Appendix C)

and agree well with the analytical solution.
necking of a free plate, based on the assumption that plane
sections remain plane (PSRP), is also obtained. This is a mod-
est modification of the treatment of Emerman and Turcotte
(1984), following that of Hart (1967).

From the analytical treatment of selective amplification,
a necking instability strong enough to generate the pinch-
and-swell structure requires n [ 1 (Smith, 1977; Emerman
and Turcotte, 1984). This requirement is re-examined using
the FEM solution. The evolution of pinch-and-swell structures
from an initial random pinch-and-swell perturbation of the
layer is compared with that obtained from the analytical
development. Finally, we discuss the estimation of rheological
properties and bulk strain from the geometry of natural pinch-
and-swell structures.

2. Analytical solutions for necking
2.1. Thick-plate solution
The existence of regular arrays of pinch-and-swell struc-
tures implies selective amplification of linearly-independent
wavelength components, suggesting a fully linearized treat-
ment of the nonlinear constitutive relations and the boundary
conditions (Fletcher, 1974). Only nonlinear materials develop
a necking instability, and wavelength selection only occurs
when the approximation of linear independence at small inter-
face slope is valid.

For a pure sinusoidal pinch-and-swell perturbation with
wavelength L and amplitude A (Fig. 3, the result for the fold
mode is equation 8 in Fletcher, 1974):

1

jDxxjA
dA

dt
¼ qsgnðDxxÞ ð1Þ

where Dxx is the basic state rate of extension and t is time. The
thick-plate result for q is:
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Fig. 3. Sketch of model setup for modelling necking and pinch-and-swell

structures. A, T and L are the amplitude, thickness and wavelength of the layer

exhibiting a power-law rheology, respectively. The imposed far field deforma-

tion is pure shear with extension parallel to the layer.



Fig. 4. Dominant wavelength to thickness ratio (Ld/T ) and maximum relative

rate of amplification (qd) as a function of the rheological parameters n and m

(n1 ¼ 1). The two open squares correspond to the parameters for numerical ex-

periments shown in Fig. 13A (n ¼ 5, m ¼ 20) and E (n ¼ 10, m ¼ 20) and the

filled squares correspond to the parameters for numerical experiments shown

in Fig. 13B (n ¼ 5, m ¼ 100) and F (n ¼ 10, m ¼ 100). See text for further

discussion.
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q is plotted versus L/T in Fig. 2 using the Matlab script of
Appendix A. In addition:

dk

dt
¼�2Dxxk ð3Þ

Integration of eq. (1) in the approximation that k and other
parameters are constant yields:

A

A0

yexpðqDxxtÞ ¼ Sq ð4Þ

where S ¼ expðDxxtÞ is the uniform basic-state stretch and A0

is the initial amplitude. Evidently, the amplification, A/A0, may
be considered a function of S. Thus, amplification by factors of
2, 5, or 10 for 10% extension, or S z 1.1, requires q z 7, 17,
or 24. q quantifies how much faster the amplification is rela-
tive to the uniform basic-state stretch; n and n1 are the stress
exponents of the layer and matrix; h and h1 are their effective
viscosities at the rate of extension Dxx. The first term in the
right hand side of eq. (2) corresponds to the kinematic ampli-
fication, which plays a special role in necking by canceling the
maximal value of the second term in the limit n / 1.

For k << 1, or L >> T, and m >> 1, or h >> h1, eq. (2)
may be approximated by:
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at the same Ld/T as in folding (Fletcher, 1974):
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The subscript d refers to the ‘‘dominant value’’. The modest
value of qd in eq. (6) implies weak pinch-and-swell amplifica-
tion in layers with stress exponents n w 2e10, typical of those
obtained from creep experiments (e.g., Neurath and Smith,
1982).

The dependence of Ld/T and qd on n and m, obtained from
the thick-plate solution (2), is shown in Fig. 4. A value qd � 24
requires n > 30 and m > 20.

An accurate computation of the maximum amplification,
and the value Lp/T at which it occurs, is obtained by integrat-
ing eq. (1) with (2) and (3) to a specified stretch (Fig. 5). Thus,
the pinch-and-swell aspect ratio at termination of selective
amplification, Lp/T, where Lp is the wavelength that has
received the maximum amplification (subscript p refers to
‘‘preferred’’, see Sherwin and Chapple, 1968; Johnson and
Fletcher, 1994), will be greater than Ld/T, opposite to the result
in folding.

Note that after wavelength selection in pinch and swell
breaks down at some value of the surface slope, extension con-
centrated at the neck continues, so that LP/T cannot be readily
estimated from field observations as it can for folds, which
maintain approximately uniform thickness for a substantial
interval of further shortening.

The large aspect ratio suggested by the above analysis tends
not to be consistent with observations of the natural structures,
such as those in Fig. 1. Strain softening (Neurath and Smith,
1982) would allow for a greater rate of necking with bulk
extension. Alternatively, a geometric effect, operative without
strain softening, might be associated with such pinch-off.
2.2. Plane sections remain plane (PSRP) solution for
a free plate
The solution based on the approximation to 1st-order is not
a valid solution for the evolution of the neck to large lateral
variation in layer thickness. However, an analytical solution
for the finite amplitude necking of a free plate may be



Fig. 5. Amplification (A/A0) spectra for (A) n ¼ 5, n1 ¼ 5, and m ¼ 100; and (B) n ¼ 10, n1 ¼ 1, and m ¼ 100 for S ¼ 1, 1.2,.,2. The circles connect paths of

maximum amplification and the squares connect paths corresponding to the initial value of Ld/T which increases during extension. The value of L/T corresponding

to the maximum amplification is termed Lp/T.
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obtained based on the assumptions that vertical plane sections
across the layer remain plane during deformation and that the
layer surfaces are traction-free. Such a solution was given by
Emerman and Turcotte (1984), who referred to a prior source
in Hart (1967). We apply this solution to a layer extended at
either constant force or constant rate of extension.

2.2.1. Constant force
By incompressibility in plane flow, the assumed uniform

horizontal rate of extension, Dxx, of a vertical plane in the
layer with local thickness T is:

Dxx ¼�
1

T

dT

dt
ð8Þ

with d/dt being the total derivative with respect to time. For
a free plate, the layer-parallel force, F, is uniform and the
mean layer-parallel deviatoric stress is:

txx ¼
1

2

F

T
ð9Þ

For a power-law fluid:

Dxx ¼ Btn
xx ð10Þ

where B is a material constant and n is the power-law expo-
nent. Substituting eqs. (9) and (10) into (8) and solving for
T(t) with initial condition T(0) ¼ T0 yields:

TðtÞ ¼ T0
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1
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ð11Þ

At a finite time, the minimum layer thickness goes to zero,
since the rate of deformation at constant load tends to infinity
as the layer thickness tends to zero. Requiring that a finite
layer segment deforms at a mean constant rate of extension re-
sults, on the other hand, in a decreasing load as thickness tends
to zero.
2.2.2. Constant rate of extension
Let a finite layer section be represented by an initial set

of segments of equal width Dx0 and variable thicknesses T0
k ,

k ¼ 1,.,N. We wish to extend the layer at a constant aver-
age rate of extension, using the PSRP approximation for
a segment:

1
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Since the area of a segment is conserved:

T0
k Dx0 ¼ TkDxk ð13Þ

The mean rate of deformation is:
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Solving for the factor in (14) and substituting it into (12)
yields:
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which may be integrated numerically. The profile is repre-
sented by a smooth curve connecting the mid-points of the
horizontal elements of each segment. These have x-
coordinates:

xk ¼
1

2
ðDxk �Dx1Þ þ

Xk�1

j¼1

Dxj
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with origin at the mid-plane of the first segment. The Dxk are
obtained from eq. (13). Solutions for constant force and rate of
extension can be plotted using the Matlab script provided in
Appendix B. These two boundary conditions yield the same
thickness evolution (Fig. 6). With respect to time the two dif-
fer, as constant force results in zero pinch thickness in a finite
time and constant rate of extension does not. The stress and
rate of deformation evolution inside the layer are different.
3. Finite element solution

Simulations of necking beyond the restrictions of the ana-
lytical treatment were obtained from specially developed
two-dimensional finite element models (see Appendix C and
Dabrowski et al., in press). The model set-up is shown in
Fig. 3. A power-law layer is either embedded in matrix or
treated as a free plate. Except for runs with random initial
thickness variation, top and bottom interface were perturbed
with a sinusoidal pinch-and-swell component at Ld/T. For
the free plate, constant mean rate of extension is obtained by
adjusting the horizontal velocities at the lateral boundaries at
each time step. For an embedded layer, the uniform vertical
velocities at the top and bottom of the matrix are adjusted to
yield a uniform rate of far-field pure shear deformation. All
initially planar boundaries are kept planar during deformation,
and are treated as frictionless. The velocity field is calculated
for the current geometry and boundary conditions and used to
Fig. 6. Analytical PSRP and FEM solutions for layer thickness evolution with n ¼
embedded layer. The PSRP solution is identical for constant extensional force and

PSRP solution for n ¼ 5, but deviates significantly from the PSRP solution for n ¼
advance layer interfaces through a small time increment. The
FEM solution has been successfully tested against the thick-
plate analytical results for relative growth rate (Fig. 2). The
boundary condition, uniform extension, based estimate (i.e.
for 3II ¼ 1, see Appendix C) of the effective viscosity ratio be-
tween layer and matrix was either m ¼ 20 or 100. This ratio
only applies to the uniform extension of layer and medium.
As structure develops, the effective viscosity becomes inho-
mogeneous (see Fig. 11 and Eq. (A4) in Appendix C).
4. Results
4.1. Pinch-and-swell evolution
Evolution of layer thickness at the neck and the swell
depends on n and m (Fig. 6). The ratio 100(L � L0)/
L0 ¼ 100(S � 1), where L0 and L are the initial and current
widths of the layer, is used as the measure of bulk extension.
The analytical PSRP solution yields identical results for either
constant layer-parallel force or constant mean rate of exten-
sion. For n ¼ 5 (Fig. 6A) the FEM solution for a free plate
agrees well with the PSRP solution, but at n ¼ 10 (Fig. 6B)
the neck thickness decreases more slowly in the accurate
FEM solution.

For the embedded layer, the thickness evolution depends
strongly on m. Addition of a matrix retards thinning of the
neck and enhances that of the swell, relative to those quantities
5 (A) and n ¼ 10 (B). FEM solutions are shown for a free plate and for an

constant extensional strain rate. The FEM free plate solution is close to the

10.
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for a free plate, as would be expected. Necking becomes less
pronounced as m and n decrease.

For n ¼ 5 the form of the pinch-and-swell obtained from
the PSRP solution agrees well with the FEM result for a free
plate (Fig. 7A and B). The assumption that PSRP is verified
for an embedded layer with m ¼ 20 and m ¼ 100 (n1 ¼ 1,
Fig. 7). Vertical lines in Fig. 7 are deformed multi-node grid
lines, and in all cases studied, initially vertical grid lines really
remain vertical and straight. At the neck, the layer surface for
the free plate is cusp-like whereas, for embedded layers, it
retains a nearly sinusoidal form.

If the Newtonian matrix is replaced by a power-law matrix
with n1 ¼ 5, the thickness evolution at the neck is different
(Fig. 8). In this simulation, L0 was not adjusted to match the
dominant wavelength for n ¼ 5 and n1 ¼ 5, but kept at the
value used for n ¼ 5 and n1 ¼ 1. For n1 ¼ 5, the thickness evo-
lution is much closer to that for the analytical free-plate PSRP
solution, because the matrix nonlinearity allows strain rate
softening as the deviatoric stress rises in the neck region.
4.2. Growth rate
The analytical solution gives, for the components with
L/T ¼ Ld/T considered here, exponential growth in amplifica-
tion, approximated as A ¼ A0expðqDxxtÞ. A relative growth
rate, dA=dt=ðADxxÞ, equal to q in the low-slope case, may be
determined from the numerical results by identifying the
Fig. 7. Analytical and numerical results of neck geometries for an extensional strain

width is 20. (A) corresponds to the PSRP solution, (B) corresponds to the FEM free

(n1 ¼ 1). The vertical lines are numerical multi-node grid lines which have been co

that the assumption that PSRP is valid also for embedded layers with small viscos
difference between the swell and neck thicknesses as 2A.
The rate of change of 2A is calculated for each time step.
The relative growth rate for the free plate is approximately
constant with respect to extension for the case of n ¼ 5, but in-
creases slightly for n ¼ 10 (Fig. 9). For embedded layers with
m ¼ 100, the relative growth rate decreases for n ¼ 5, but is
nearly constant for n ¼ 10 up to an extension of about 25%,
beyond which it decreases strongly (Fig. 9). For m ¼ 20, the
relative growth rate decreases continuously for both n ¼ 5
and n ¼ 10.
4.3. Evolution of the distributions of stress and
effective viscosity
For the embedded layers (Fig. 10), the mean horizontal
deviatoric stress across the layer first increases at the neck
and then decreases after a certain amount of extension for
values of n ¼ 5 and n ¼ 10. In contrast, at the swell this
stress first decreases and then increases. For the free plate,
the stress continuously increases at the neck but decreases
at the swell. The stress changes are larger for n ¼ 10 than
for n ¼ 5.

The local effective viscosity in an isotropic power-law
fluid depends on the strain rate through the second invariant
of the strain rate tensor, 3II (eq. (A4) in Appendix C). For
a homogeneous pure shear deformation without necking,
3II ¼ 1, given as a dimensionless quantity, and the behavior
of 70%. Note the vertical exaggeration: the individual box height is 1 and the

plate solution, and (C) and (D) are numerical FEM results for embedded layers

ntinuously deformed during the numerical simulation. The results demonstrate

ity ratio (D).



Fig. 8. Evolution of neck thickness for power-law layer and power-law matrix. The power-law exponent of the matrix material, n1, has a considerable impact on the

thickness evolution.
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is effectively that of a Newtonian material. When the rate of
deformation is inhomogeneous due to necking, 3II is inhomo-
geneous. Where 3II increases, the effective viscosity de-
creases and vice versa (Fig. 11). Thus, some areas in the
model stiffen and others soften during the deformation.
Necks soften markedly whereas swells stiffen. The strongest
variation in effective viscosity can be observed for the model
with n ¼ 10 and n1 ¼ 10. In this model, two bands of lower
effective viscosity occur within the matrix. These bands form
an angle of about 90�, which would correspond to the angle
of incipient shear bands in a plastic material with a von
Fig. 9. Evolution of the relative growth rate of the layer perturbation for different va

increasing while the growth rates for the embedded models are decreasing. The gro

amount of extension faster than for values of m ¼ 20. Note that for n ¼ 10 and m ¼
but then decreases strongly.
Mises yield criterion at yield, corresponding to the limit
n1 / N. Note that values of n ¼ 10 and n1 ¼ 10 cause
a strong necking instability for a viscosity ratio of 20
(Fig. 11D).
4.4. Evolution of sinusoidal and random pinch-and-swell
To study salient features in the evolution of simple struc-
tures, the initial perturbation was taken as a sinusoidal, symmet-
ric pinch-and-swell. The forms of the resulting pinch-and-swell
structures show a marked variation with n and m (Fig. 12). For
lues of n (n1 ¼ 1). The growth rates for the FEM free plate models are slightly

wth rates for viscosity ratios m ¼ 100 first decrease slower, but after a certain

100 the growth rate is more or less constant up to an extension of about 25%



Fig. 10. Evolution of horizontal deviatoric stress, averaged across the layer, at the neck and swell. The lines above 1 correspond to stress values at the neck (or

pinch) and the lines below 1 correspond to stress values at the swell. The larger the effective viscosity ratio, the larger the difference in stress at the neck and swell.
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small values of n and m the layer is also thinned considerably at
the swell and structures equivalent to natural pinch-and-swell
structures do not develop. Such pinch-and-swell structure
does develop provided n � 5 and m > 20.

In nature, the initial perturbation is generally random. A
plausible assumption is that the natural perturbation will
have the properties of ‘‘red noise’’, with amplitude propor-
tional to wavelength. Numerical experiments were run with
Fig. 11. Distribution of the effective viscosity (heff, see eq. (A4) in Appendix C) fo

All graphs correspond to an extension of 39% and an effective viscosity ratio of 2

responds to high effective viscosities and blue to low effective viscosities. The effe

observable within the layer especially in (D).
interfaces perturbed by red noise (Fig. 13). The two surfaces
are given independent initial perturbation, each with a maxi-
mum difference in vertical coordinate along the layer equal
to 1/20th the initial layer thickness. For comparison, the
same perturbation was used for each experiment on layers of
unit initial thickness and length of 70 units. The exception is
an experiment (Fig. 13H) where the perturbation of one sur-
face is the mirror image of the other.
r different values of the power-law exponent in the layer, n, and the matrix, n1.

0. The values of the colorbar are the log10 of the effective viscosity. Red cor-

ctive viscosity varies by up to 4 orders of magnitude, and a strong variation is



Fig. 12. Large strain geometries of numerically modeled pinch-and-swell

structures for Newtonian matrix. No vertical exaggeration. Boxes around

layers show initial layer thickness to emphasize overall layer thinning. The ini-

tial sinusoidal perturbations corresponded to the dominant wavelength, Ld/T,

yielding different initial length to thickness ratios of the four layers. Varying

the power-law exponent from 5 to 10 and the effective viscosity ratio from

20 to 100 has a major impact on the pinch-and-swell geometries.
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As expected, the strongest instability occurs for the largest
values, n ¼ 10 and m ¼ 100. The relative strength of necking
instability for the random perturbation is the same as for the
initial sinusoidal forms. The height of the box around each
layer in Fig. 13 equals the initial layer thickness. Layers
with weak necking instability (Fig. 13A,B,C,E) show signifi-
cant thinning over their entire length, but strongly necked
layers (Fig. 13D,F,G) also show significant thinning at swells.
In strain estimation by interpretation of pinch-and-swell ge-
ometries, the ratio of swell thickness to neck thickness is
usually used to estimate strain, assuming the swells preserve
initial thickness (e.g., Pollard and Fletcher, 2005). Such
a method therefore gives a lower bound for strain.

5. Discussion

Every mathematical model is always a simplification of
a natural process that aims to describe its essential features
with a minimal number of assumptions. Such an aim is ex-
pressed in the well known principle of logic termed the lex
parsimoniae or Ockham’s razor (e.g. Kneale and Kneale,
1985). We have shown here that pinch-and-swell may be gen-
erated in a power-law layer with n � 5, but not in a Newtonian
viscous layer n ¼ 1 (see also Fletcher, 1974; Emerman and
Turcotte, 1984). Such nonlinear power-law behavior is ob-
served in steady-state creep experiments (e.g. Carter and
Tsenn, 1987) and the values for n and m used in this study
are within the range of experimental values. For dislocation
creep, typical values of n lie between 3 and 5, but values as
large as 8 are obtained. Therefore, the constant-property
power-law fluid is the simplest experimentally established
behavior that yields pinch-and-swell structure. Additionally,
experimental values obtained on the centimeter scale for ho-
mogeneous rock samples and laboratory deformation rates
may be smaller than the effective values for natural,
heterogeneous rocks and geological deformation rates on the
meter scale. In nature, many deformation mechanisms act si-
multaneously at different scales, but at the scale of observa-
tion, they may be represented by power-law creep. A more
complex model for pinch-and-swell formation would be justi-
fied if it were required to fit other observations, such as micro-
structural observations, in addition to the pinch-and-swell
geometry.

Applying damage mechanics, Turcotte and Glasscoe (2004)
and Nanjo et al. (2005) showed that the brittle deformation can
be modeled by power-law constitutive relations, with stress
exponent between 5 and 15. Neurath and Smith (1982) show
that strain softening in a power-law fluid increases the effec-
tive power-law exponent in necking, and this may exceed
15. We show that n ¼ 5e10 in both layer and matrix and
m > 20 suffice to generate significant necking instability, pro-
ducing structures similar to natural pinch-and-swell structures.
Thus, while they may be operative, weakening mechanisms
such as strain softening or shear heating need not be evoked.

To obtain estimates of rheological parameters such as n and
m from measurements of natural pinch-and-swell structure, it
is tempting to follow the method that Sherwin and Chapple
(1968) applied to data from natural single-layer folds (see
also Fletcher, 1974; Fletcher and Sherwin, 1978; Hudleston
and Holst, 1984). Such a method might be tested using the
simulations of pinch-and-swell structures derived from the
random initial perturbation of a long layer segment. As a first
step, we compute the amplification spectrum for a specified set
of values n, n1, and m taking into account the basic-state layer-
parallel extension. Results for the parameters used in the two
simulations that showed the strongest structural development
after 80% extension (S ¼ 1.8) are shown in Fig. 13F and H.
Fig. 5A shows the amplification spectra at stretches S ¼ 1,
1.2, 1.4,.,2 for n ¼ 5, n1 ¼ 5, and m ¼ 100; Fig. 5B shows
the result for n ¼ 10, n1 ¼ 1, and m ¼ 100. In these figures,
the steeper curve connects maxima in amplification. The value
of the ‘‘preferred’’ wavelength to thickness ratio, Lp/T, in-
creases, but the rate of increase decreases with stretch, and
the final ratio is much less than that of the component initially
at the maximum of the spectrum, shown by the gentler curve.
After an amplification of 10, Lp/T z 2 Ld/T (Fig. 5A) and
LP/T z 1.5 Ld/T (Fig. 5B). This selective amplification
approximates that achieved in the random perturbation exper-
iments. At n ¼ 5, n1 ¼ 5, and m ¼ 100, the maximum ampli-
fication is only 8 at S ¼ 1.6, and there is little selectivity,
except against small L/T. For n ¼ 10, n1 ¼ 1, and m ¼ 100
(Fig. 5B), maximum amplification and selectivity are both
significantly greater, although the latter is still modest.

Low selectivity of the larger layer segments may be tied to
the development of extremely attenuated necks (Fig. 13F and H).
The resulting segmentation of the layers slows down the
growth of instability in the segments. Once a single pinch is
developed, such as in Fig. 13D, the layer is no longer subject
to the full rate of extension applied at the lateral boundaries.
Extension in the neck-bounded layer segments is then driven
only by shearing of the matrix along its surfaces. Schmid
et al. (2004) investigated the corresponding situation of



Fig. 13. Pinch-and-swell geometries after 80% extension for randomly perturbed layer interfaces. Note the vertical exaggeration: the individual box height is 1 and

the length 126. The exception is (G) which shows part of (F) with the correct aspect ratio. It is evident that systems where only the layer exhibits a power-law

rheology with n ¼ 5 (A and B) do not show a significant necking instability. If both layer and matrix are in the power-law regime with n ¼ 5 and n1 ¼ 5 (C and D)

then an effective viscosity contrast of 100 is sufficient to develop a necking instability that is substantially faster than the passive layer thinning. Simulations with

n ¼ 10 and m ¼ 100 develop the strongest necking instability (F and H). Reduction of the effective viscosity contrast to 20 significantly weakens the necking

instability (E). The effect of an a priori interface synchronization (mirroring along the mid-plane) that is assumed by the thick plate solution does not change

the results drastically, compare (F) and (H).
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folding. They found that if the effective aspect ratio of width
to thickness, a/b, of a layer segment is less than the effective
viscosity ratio, m, the rate of shortening in it decreases sig-
nificantly relative to the far-field value and growth of folds
is slowed. The same applies in the inception of pinch-and-
swell in extension. The small connectors between boudins
can be ignored, and the rate of extension inside the layer
segment is:

Dl
xxz

1

1þ 2mb

a

D0
xx ð16Þ
where D0
xx is the far-field value. Note the large vertical exag-

geration in Fig. 13, illustrated in sections F and G. Segmenta-
tion leads to preservation of weakly developed necks within
segments (Fig. 13F and H). The effect of reducing the rate
of extension inside the layer is amplified due to the nonlinear
power-law rheology, which causes large effective viscosities in
the isolated segments (for example swell regions in Fig. 11D).
This causes a rapid decrease in the further development of the
incipient pinches that can be observed in the isolated segments
in Fig. 13F. Furthermore, the increase of effective segment vis-
cosities is associated with an increase in Ld/T that also inhibits
the growth of previously initiated pinches. Therefore, the layer
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segmentation must be considered a key controlling factor in
the finite strain development of pinch-and-swell structures.

Are the structures produced in the numerical models like
those observed in the field? The extensive data sets required
in the method of Sherwin and Chapple (1968) and others are
not yet available, and we draw only a few preliminary conclu-
sions here. Pinch-and-swell structures of Fig. 1E have aspect
ratios of 4.7, 3.3, 3.3, and 3.5, and of Fig. 1F of 3.8 and 5.3,
with only two larger than the minimum of the present model,
Ld/T ¼ 4 in the limit n / N (Fig. 4). These structures thus
could not have formed by the necking of a homogeneous, con-
stant-property power-law layer. Such small aspect ratio struc-
tures have been produced in a stiff layer embedded centrally in
a soft layer of finite thickness bounded by much stiffer media
(unpublished). Selectivity is markedly increased relative to the
single-layer case, but strong instability requires much larger
values of nde.g., n ¼ 100. The suggestion that the layer in
Fig. 1E is embedded in a softer layer of finite thickness is ten-
able. The shapes and pinch-and-swell aspect ratios in Fig. 1C
and D are comparable to those obtained in the present simula-
tions (compare Figs. 12D, 13F and G). The single, localized
neck in the limestone layer shown in Fig. 1B is similar to
localized necking in the simulation shown in Fig. 13D. Our
results indicate that n ¼ 5e10 and m ¼ 20e100 are lower
limits for embedded constant-property power-law fluid layers
showing pinch-and-swell structure.

For n � 5, the PSRP and free plate FEM solutions give
closely similar swell and neck thicknesses to large extension.
For n > 5, the PSRP and FEM solutions agree for swell
thickness, but the PSRP solution shows more rapid reduction
in neck thickness. Due to the strong material non-linearity,
the neck becomes sharper and deformation no longer de-
pends only on the mean horizontal stress as in the PSRP
approximation. The same effect is observed for small aspect
ratio perturbations of the free plate, since the approximation
is only valid when the thickness gradient along the layer is
small. No dependence on initial amplitude was observed on
the agreement of PSRP and FEM, within the range of pertur-
bation amplitudes between 1/100th and 1/10th of the layer
thickness.

At finite amplitude, the growth rate of the necking instabil-
ity, as now measured by the rate of change of the ratio of the
thickness of a neck to that of the adjacent swell(s), decreases
with increasing extension. However, for the larger values of m
the growth rates first decrease slower than for smaller values
of m but then decrease faster after a certain amount of exten-
sion (Fig. 9). This is different from the evolution of the growth
rate for folding, where the higher growth rates for larger
viscosity contrasts decrease faster than the growth rates for
smaller viscosity contrasts (Schmalholz, 2006). For n ¼ 10
and m ¼ 100 the growth rate actually stays constant for about
25% of extension. The behavior that higher growth rates
decrease slower with progressive extension indicates that an
increase in either n or m results in a considerable stronger
necking instability where much less extension will be required
to achieve a certain thinning. The characteristic differences in
the growth rate evolution for different values of n and m are
caused by nonlinear, large strain effects and cannot be pre-
dicted with analytical methods, so a numerical method is
essential.

The evolution of the neck thickness with progressive ex-
tension shows two types of behavior (Fig. 6). For the free
plate and embedded power-law layers with large n and m,
thickness versus extension curves are strongly convex up-
wards. For small n and m, thickness versus extension curves
show a concave upwards shape after some extension. Layers
exhibiting strong convex upwards thickening curves are likely
to be segmented after sufficient extension, whereas layers
exhibiting concave upwards thickening curves are likely to
develop wide-necked pinch-and-swell structures (Mandal
et al., 1992).

Simulations displayed in Figs. 12 and 13 show two types of
pinch-and-swell structures that are similar to those in the sta-
ble and unstable regime according to Mandal et al. (1992).
Mandal et al. (1992) base discrimination of two neck types
on experimental observation of lateral neck propagation with
disappearance of swells after sufficient extension. Such obser-
vations are not seen in our numerical simulations. Mandal
et al. (1992) performed experiments without an embedding
medium, and used rods instead of plates, both significant dif-
ferences from the present numerical models. Perhaps more
significantly, the material used by Mandal et al. (1992) is
not a power-law fluid, but viscoelastic and strain hardening.
Embedded power-law layers did not exhibit the behavior
they observed.

The numerical simulations verify the assumption that PSRP
during necking. This result may be important for kinematic
modeling of lithospheric necking, in which lithosphere is sub-
divided into a number of aligned columns that are thinned us-
ing different thinning factors (e.g. Kooi et al., 1992). Each
column is assumed to thin and extend by pure shear alone,
as in the PSRP approximation. Kinematic thinning models re-
quire significantly less computation than fully dynamic
models, and therefore may be used efficiently to restore the
thermo-tectono-stratigraphic evolution of a sedimentary basin
(e.g. Poplavskii et al., 2001; Rüpke et al., in press).

6. Conclusions

The analytical PSRP solution for a free plate agrees well
with the FEM solutions for power-law stress exponent n � 5
and viscosity ratios m � 100. The low-amplitude dispersion
curve and the PSRP solution constitute a powerful analytical
framework for investigating the formation of pinch-and-swell
structures in power-law layers. Also, the dispersion curve for
relative growth rate is an important tool to test numerical
models with non-linear power-law rheologies, such as the
FEM algorithm applied in this study, in order to guarantee cor-
rect numerical results.

Dependence of the necking behavior on power-law stress
exponents and viscosity ratios is strong. Values of m ¼ 100
and n ¼ 5e10 are sufficient to produce pinch-and-swell forms
similar to those observed in nature. Power-law stress expo-
nents of the matrix n1 � 5 significantly increase the necking



 Matlab script for pinch-and-swell evolution in power-law fluids
 Ray Fletcher, Stefan Schmalholz & Dani Schmid 

clear variables, close all, clc;
 INPUT PARAMETERS ==================================================

n                   = 5;                 Power-law exponent
amplitude           = 0.04;              Initial amplitude of perturbation 
width               = 10;  Initial width 
B                   = 1;                 B-coefficient 
F                   = 1;                 Constant force 
nx                  = 201;               Number of horizontal columns 

 SET-UP OF GEOMETRY AND TIME ========================================
X_vec               = linspace(0, width, nx);
H_vec               = 1+amplitude*cos(X_vec/width*2*pi);  Thickness 
h0                  = min(H_vec); 
nt                  = 1000;
t_tot               = (-2^n*(-(F/h0)^(-n) + (0.02*h0/F)^n)/n/B); 
T_vec               = linspace(0, t_tot, nt);                                 Time 
dt                  = T_vec(2)-T_vec(1); 
[X, TIME]           = meshgrid(X_vec, T_vec); 
[H, TIME]           = meshgrid(H_vec, T_vec); 
Exx_bulk(1)         = NaN;
X_vec_cs            = linspace(0, width, nx);
H_vec_cs            = 1+amplitude*cos(X_vec_cs/width*2*pi);
[Xcs, TIME_cs]      = meshgrid(X_vec_cs, T_vec); 
[Hcs, TIME_cs]      = meshgrid(H_vec_cs, T_vec); 

 TIME LOOP ==========================================================
for tstep=2:nt

Solution for constant force 
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instability, and generation of pinch-and-swell forms similar to
those observed in nature takes place for values of m smaller
than the ones required for n1 ¼ 1. Additional weakening
mechanisms, such as strain softening, although likely to be op-
erative, are not required to generate natural pinch-and-swell
structures.

The finite amplitude evolution of pinch-and-swell struc-
tures and buckle-folds is considerably different, although for
both, the low-amplitude dispersion curves yield the same
dominant wavelength. A pinch-and-swell component extends
throughout its formation, so that waveform selection is a con-
tinuous process, while in folding, a waveform, at Lp/T, is
selected (locked) and buckles without further significant
change in arc-length and layer thickness.

The swell of a pinch-and-swell structure may also thin sig-
nificantly during necking and estimates of bulk strain based on
the relative thickness of neck and swell have to be carried out
with care.
    H(tstep,:)      =  F.*(-2^n./(dt*n*B - 2^n*(F./H(tstep-1,:)).^(-n))).^(-1/n); 
    Exx             = -(H(tstep,:)-H(tstep-1,:))./H(tstep-1,:)/dt; 
    Dx              = diff(X(tstep-1,:));
    Dx_new          = Dx + dt*Dx.*((Exx(2:end)+Exx(1:end-1))./2); 
    X(tstep,:)      = cumsum([0,Dx_new]);
    Exx_bulk(tstep) = (X(tstep,end)-X(tstep-1,end))/X(tstep-1,end)/dt; 

Solution for constant strain rate
    S1              = sum(Hcs(tstep-1,:)./Hcs(tstep,:).^(n+1));
    S2              = sum(Hcs(tstep-1,:)./Hcs(tstep,:)); 
    Dx_mean         = B*(F/2)^n*S1/S2; 

Hcs(tstep+1,:)  = Hcs(tstep,:) - dt.*(S2./S1).*(1./Hcs(tstep,:)).^(n-1)*Dx_mean; 
    Dxcs            = diff(Xcs(tstep-1,:)); 
    Dxcs_new        = Hcs(tstep,1:end-1).*Dxcs./Hcs(tstep+1,1:end-1);

Xcs(tstep,:)    = cumsum([0,Dxcs_new]);
end 

 PLOTTING RESULTS ===================================================
figure1             = figure('units','normalized','position',[0.0992188 0.506836 0.4375 0.410156]); 
step                = 0;
for tstep=[1 round(nt*0.97) nt-1]; 
    step            = step+1; 
    subplot(310+step) 
    plot(X(tstep,:)-X(tstep,end)/2, H(tstep,:), '-k', X(tstep,:)-X(tstep,end)/2, -H(tstep,:), '-k') 
    hold on 
    plot([X(tstep,1)-X(tstep,end)/2 X(tstep,1)-X(tstep,end)/2],[-H(tstep,1) H(tstep,1)],'-k') 
    plot([X(tstep,end)-X(tstep,end)/2 X(tstep,end)-X(tstep,end)/2],[-H(tstep,end) H(tstep,end)],'-k')
    axis equal; 
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    axis([-max(X(end,:)/2)*1.1 max(X(end,:)/2)*1.1 -1.5-amplitude*2 1.5+amplitude*2]); drawnow
    Extension   = ((X(tstep,end)-X(tstep,1))-width)/width*100; 
    title(['Extension = ',num2str(real(Extension),3),' [ ]']) 
end 
figure2             = figure('units','normalized','position',[0.54375 0.506836 0.4375 0.410156]);
Extension           = ((X(:,end)-X(:,1))-width)/width*100;
plot(Extension,H(:,round(nx/2)),'-k',Extension,H(:,1),'--k'); hold on
Extension           = ((Xcs(:,end)-Xcs(:,1))-width)/width*100;
plot(Extension,Hcs(1:end-1,round(nx/2)),'-b',Extension,Hcs(1:end-1,1),'--b')
xlabel('Extension [ ]'); ylabel('Thickness [no dimension]'); title(['n = ',num2str(n)]) 
legend('Neck - constant force','Swell - constant force','Neck - constant rate','Swell - constant rate',3)
Appendix A. Matlab script for plotting the
analytical dispersion relation for necking (thick plate,
see eq. 2)
 Dispersion relation for necking 
 Ray Fletcher 

clear variables, close all, clc; 
L_T         = 0.01:0.01:40;              Wavelength to thickness array 
n           = 10;                        power-law exponent layer 
n1          = 1.001;                     Power-law exponent matrix 
R           = 1/20;                     Viscosity contrast between matrix and layer 
phi         = 1; 
a           = sqrt(1/n); 
beta        = sqrt(1-1/n); 
k           = 2*pi*(1./L_T); 
Q           = sqrt(n/n1)*R; 
q           = -1+(2*n*(1-R))./... 
    ((1-Q^2)+phi*(sqrt(n-1))./(2*sin(beta.*k)).*... 
    ((1+Q^2).*(exp(a*k)-exp(-a*k))+2*Q*(exp(a*k)+exp(-a*k)))); 
[qmax,imax] = max(q); 
L_T_max     = L_T(imax); 

plot(L_T,q,'-k','linewidth',1.5) 
hold on 
plot([L_T_max L_T_max],[min(q) qmax],'--k') 
plot([min(L_T) L_T_max],[qmax qmax],'--k') 
xlabel('L / T') 
ylabel('q ') 
title(['Dispersion relation for necking. n = ',num2str(n),', n_1 = ',num2str(n1,2)]) 
Appendix B. Matlab script for the analytical
PSRP solution
Appendix C. The finite element algorithm

This appendix summarizes the self-developed finite element
algorithm which was used in this study. A modified version of
this finite element algorithm, optimized for calculation speed,
was used for the simulations with random perturbations and is de-
scribed in detail in Dabrowski et al. (in press). The conservation
equations for slow flow in the absence of body forces in two di-
mensions are (e.g. Batchelor, 1967; Bathe, 1996; Haupt, 2002):

vsxx

vx
þ vsxy

vy
¼ 0

vsxy

vx
þ vsyy

vy
¼ 0

ðA1Þ
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vp

vt
¼�K

�
vvx

vx
þ vvy

vy

�
ðA2Þ

where sxx and syy are components of the total stress tensor for
the x- and y-direction, respectively, sxy is the shear stress, p is
the pressure, K is the compressibility parameter and vx and vy

are the velocities in the x- and y-direction. (A1) represents
conservation of linear momentum and (A2) represents conser-
vation of mass. Here, incompressible flow only is considered.
(A2) deviates from the standard form for incompressible flow,
i.e.

vvx

vx
þ vvy

vy
¼ 0;

but is only applied here for very large values of K, so that the
resulting divergence of the velocity field goes to zero, which
means to 10�15 in this study, and the material is effectively
incompressible. Application of (A2) is often referred to as
the penalty approach for incompressible flow (Cuvelier
et al., 1986; Hughes, 1987). The constitutive equations for
a power-law rheology are:
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with heff being the effective viscosity given by

heff ¼ h03
1
n�1
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and h0 being the reference viscosity for homogeneous pure
shear conditions (i.e. 3II ¼ 1). Discretization of the governing
equations and numerical integration is performed using the
isoparametric Q9/3-element with 9 nodes for the biquadratic
continuous velocity degrees of freedom and 3 nodes for the
linear discontinuous pressure degrees of freedom (Hughes,
1987). After discretization the governing equations are given
as (Hughes, 1987):	

K Q
QT � M

KDt


�
~v

~pnew


¼
�

0
� M

KDt
~pold


ðA5Þ

where swung dashes denote vectors containing nodal values of
the respective variables. The time derivative in (A2) has been
replaced by a finite difference quotient with Dt being the time
increment (vp=vtzðpnew � poldÞ=Dt). The three matrices K, Q
and M are:

K¼
Z Z

BTDBdxdy; Q¼�
Z Z

BT
GNPdxdy;

M¼
Z Z

NT
PNPdxdy ðA6Þ
where vector NP contains the pressure shape functions and ma-
trix B and vector BG contain spatial derivatives of the velocity
shape functions in a suitable organized way (Zienkiewicz and
Taylor, 1994). The integrations are performed numerically
using 9 integration points per element. Using discontinuous
pressure shape functions allows the elimination of the pressure
at the element level. This elimination leads to a system involv-
ing only unknown velocities:

L~v¼�Q~pold ðA7Þ

where

L¼KþKDtQM�1QT ðA8Þ

Values of ~pnew are restored during the Uzawa-type iteration al-
gorithm, during which (A7) is solved iteratively with updated
values of ~pold until the divergence of the velocity converges to-
wards zero (i.e. 10�15, e.g., Pelletier et al., 1989). After every
time step, the resulting velocities are used to move the nodes
of each element with the displacements resulting from the
product of velocities times time step (i.e. explicit time integra-
tion). Then, the new velocities are again calculated for the new
grid.

The non-linearity of the power-law material is treated with
Picard iterations, which exhibit a large radius of convergence.
The code is structured so that the Uzawa iteration loop is the
innermost, nested inside the power-law loop. Convergence
studies reveal that the easily reachable criterion on incompres-
sibility of 10�15 (normalized over the background strain rate)
is more than sufficient; however, it is crucial that a rather
tough Picard iteration criterion is used. In the presented nu-
merical experiments it was required that the absolute value
of the velocity differences, stored on the vector Dv, between
two Picard iteration steps, p, anywhere in the computational
domain fulfils:�
maxðDv pÞ �max

�
Dv p�1

���
maxðDv pÞ � 10�5 ðA9Þ

Since a Lagrangian moving mesh approach is chosen in order
to accurately resolve the evolution of the geometry and related
parameters re-meshing is employed once the mesh is too
strongly deformed.

The developed finite element algorithm has been success-
fully tested with several analytical solutions. The FEM code
correctly reproduced (i) the analytical growth rates (Fletcher,
1977) for single-layer folding, (ii) the analytical growth rates
for power-law necking (Fig. 2), and (iii) the analytical pressure
field around a rigid inclusion (Schmid and Podladchikov,
2003).
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Rüpke, L.H., Schmalholz, S.M., Schmid, D.W., Podladchikov, Y.Y. Automated

thermo-tectono-stratigraphic basin reconstruction: Viking Graben case

study. American Association of Petroleum Geologists Bulletin, 92 (3), in

press. doi:10.1306/11140707009.

Schmalholz, S.M., 2006. Finite amplitude folding of single layers: elastica,

bifurcation and structural softening. Philosophical Magazine 86 (21e22),

3393e3407.

Schmalholz, S.M., Podladchikov, Y.Y., 2000. Finite amplitude folding: tran-

sition from exponential to layer length controlled growth. Earth and

Planetary Science Letters 181 (4), 617e633.

Schmid, D.W., Podladchikov, Y.Y., 2003. Analytical solutions for deformable

elliptical inclusions in general shear. Geophysical Journal International

155, 269e288.

Schmid, D.W., Podladchikov, Y.Y., Marques, F.O., 2004. Folding of a finite

length power law layer. Journal of Geophysical Research-Solid Earth

109 (B3), doi:10.1029/2003JB002421.

Sherwin, J.A., Chapple, W.M., 1968. Wavelengths of single layer foldsda

comparison between theory and observation. American Journal of Science

266 (3), 167e179.

Smith, R.B., 1977. Formation of folds, boudinage, and mullions in non-

Newtonian materials. Geological Society of America Bulletin 88 (2),

312e320.

Turcotte, D.L., Glasscoe, M.T., 2004. A damage model for the continuum rhe-

ology of the upper continental crust. Tectonophysics 383 (1-2), 71e80.

Zienkiewicz, O.C., Taylor, R.L., 1994. The Finite Element Method. McGraw-

Hill Book Company, London.

Zuber, M.T., Parmentier, E.M., 1986. Lithospheric neckingda dynamic-model

for rift morphology. Earth and Planetary Science Letters 77 (3-4), 373e383.

http://dx.doi.org/doi:10.1029/2007GC001719
http://dx.doi.org/doi:10.1306/11140707009

	Evolution of pinch-and-swell structures in a power-law layer
	Introduction
	Analytical solutions for necking
	Thick-plate solution
	Plane sections remain plane (PSRP) solution for a free plate
	Constant force
	Constant rate of extension


	Finite element solution
	Results
	Pinch-and-swell evolution
	Growth rate
	Evolution of the distributions of stress and effective viscosity
	Evolution of sinusoidal and random pinch-and-swell

	Discussion
	Conclusions
	Acknowledgments
	Matlab script for plotting the 
	Matlab script for the analytical 
	The finite element algorithm
	References


